24x^2+196x+32=0

Simple and best practice solution for 24x^2+196x+32=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+196x+32=0 equation:



24x^2+196x+32=0
a = 24; b = 196; c = +32;
Δ = b2-4ac
Δ = 1962-4·24·32
Δ = 35344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{35344}=188$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(196)-188}{2*24}=\frac{-384}{48} =-8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(196)+188}{2*24}=\frac{-8}{48} =-1/6 $

See similar equations:

| x+.08x=51.3 | | -4(2r-5)=92 | | 3x/2-7=×/4-2 | | 12x-9x=3 | | s+2(5+3)+45-5=148 | | 180=4x+50+10x+5+5+10x | | 100(5)=35x | | X^3+4x^2-2x-6=0 | | 7(q-8/3)-5=2 | | -4(x-4)=-6x+2 | | 23=12-4p+6p | | -3x+100=7x | | h+(15+10h)1/5=0 | | 6+48+9+w=100 | | 180=4x+50+10x+5+10x+5 | | 6⋅(a÷3)=2a | | 28-4x=19+5x | | A(x^2+4x)=13 | | X+(4.5/x)=3.5 | | A(x2+4x)=13 | | 144-11x=x | | x+3/9=20 | | 7x-5/2=6x | | 8x^2=2+17x | | 5.5=x-45 | | t=2(3.99+3.75) | | -m+6+3m=-6 | | 50=-19z+5+7z | | q+-10=2 | | 200m-100m+52800=55825-175m | | 6+k-9-5k=5 | | 16/7=28/g |

Equations solver categories